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ABSTRACT

Healthcare systems operate as high-reliability organisations, where consistent operational performance is essential for patient safety,
quality of care, and financial sustainability. Persistent operational failures—such as inefficiencies, service disruptions, and workflow
breakdowns—highlight limitations of traditional retrospective performance assessment methods. Artificial intelligence (Al)-based
predictive models have emerged as promising tools to anticipate operational risks, yet evidence regarding their predictive performance
and managerial applicability remains fragmented. This systematic review and meta-analysis aimed to evaluate the predictive accuracy,
methodological robustness, and managerial relevance of Al-based models used for operational performance and failure-risk assessment
in healthcare systems. A systematic search of PubMed/MEDLINE, Embase, Scopus, Web of Science, Cochrane CENTRAL, and IEEE
Xplore was conducted in accordance with PRISMA 2020 guidelines. Studies were selected using a PECOS framework, focusing
on Al-based predictive models applied to healthcare operational outcomes. Risk of bias was assessed using the QUADAS-AI tool.
Random-effects meta-analyses were performed to pool predictive performance metrics, including area under the receiver operating
characteristic curve (AUC), accuracy, precision, recall, and F1-score.Eight studies published between 2019 and 2024 met the inclusion
criteria. Al-based models demonstrated moderate discriminatory performance, with a pooled AUC of 0.646 (95% CI: 0.563-0.721)
and substantial heterogeneity (I = 86.8%). Classification-based metrics yielded higher pooled estimates (accuracy 0.814; F1-score
0.825) but exhibited pronounced heterogeneity. Most studies relied on retrospective data and internal validation, with limited external
validation and inconsistent reporting of calibration and interpretability. Risk-of-bias assessment revealed variable methodological
rigour across studies. Al-based predictive models provide moderate, context-dependent value for assessing operational performance
and failure risk in healthcare systems, outperforming traditional retrospective approaches but lacking universally high predictive
accuracy. Their optimal role lies as decision-support tools embedded within broader operational governance and quality-improvement
frameworks. Future research should prioritise standardised operational outcomes, external validation, and evaluation of real-world
impact to support sustainable integration of Al into healthcare operations management.
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Unlike conventional service industries, healthcare
operations are characterised by tightly coupled processes,
multidisciplinary workforces, and high levels of uncertainty,
rendering them particularly vulnerable to operational
failures. Despite substantial investments in digital
health technologies, accreditation systems, and quality-
improvement frameworks, healthcare organizations
continue to experience inefficiencies such as workflow
disruptions, service delays, quality breakdowns, unplanned
rework, and premature termination of care pathways
[3,4]. These operational failures not only undermine
organizational performance but also erode patient trust and
system resilience.

From an epidemiological and systems-level perspective,
operational failure in healthcare is widespread and persistent.
Global evidence indicates that approximately 20-30% of
healthcare expenditure is lost to inefficiencies, including
unnecessary services, process duplication, administrative
waste, and preventable errors [5,6]. Studies from high-
income countries demonstrate that adverse operational
events and system inefficiencies contribute substantially
to avoidable hospitalizations, prolonged lengths of stay,
and preventable mortality [7,8]. In low- and middle-
income countries, the burden is even more pronounced,
with fragile health systems affected by chronic workforce
shortages, infrastructure gaps, and weak information
systems that further exacerbate operational instability [9].
Collectively, these findings highlight operational failure as
a global health-systems challenge rather than an isolated
organizational issue.

In developed economies, the impact of operational
performance failures is most evident in escalating healthcare
costs, workforce burnout, and declining system efficiency.
Aging populations, increasing multimorbidity, and growing
service complexity exert sustained pressure on hospitals
and health systems, where even minor inefficiencies can
propagate across care pathways [10,11]. Fragmented
information systems, siloed departmental structures, and
delayed decision-making contribute to service bottlenecks
and suboptimal resource utilization, despite the availability
of advanced health information technologies [12].
Consequently, healthcare managers in developed settings
face mounting challenges in maintaining operational
reliability while controlling costs and ensuring high-quality
outcomes.

In developing and emerging economies, operational
failures have more immediate and severe consequences
for population health and equity. Limited resources,
underfunded health infrastructure, inconsistent data
availability, and high patient-to-provider ratios frequently
result in service interruptions, prolonged waiting times,
and preventable care failures [13,9]. Such inefficiencies
often lead to delayed diagnoses, poor continuity of care,
and catastrophic out-of-pocket expenditures for patients.
Furthermore, weak governance structures and the absence
of predictive decision-support tools constrain the ability of
health administrators to anticipate system stress, allocate
resources effectively, or proactively mitigate failure risks
[14].

Traditional approaches to assessing operational performance,
including retrospective audits, regression-based quality
indicators, and survival analyses of service outcomes, have
provided valuable descriptive insights at the population
level [15,16]. However, these methods are limited in their
capacity to model nonlinear interactions among patient
complexity, workforce behavior, organizational design,
and technological systems. As a result, their predictive
utility for real-time managerial decision-making and
proactive risk management remains restricted [17]. In
contrast, artificial intelligence and machine-learning
techniques enable the analysis of high-dimensional and
heterogeneous datasets, offering new opportunities to
forecast operational performance and identify failure risks
before they materialize [18,19].

Despite the rapid expansion of Al applications in healthcare
operations, the existing literature remains fragmented, with
substantial variation in outcome definitions, modeling
approaches, validation strategies, and reported performance
metrics. At present, there is no consolidated evidence base
evaluating the accuracy with which Al-based models predict
operational performance and failure risk across healthcare
systems, nor their applicability to health administration and
management practice. Therefore, this systematic review and
meta-analysis was undertaken to synthesize the available
evidence on the predictive performance of Al-based models
in healthcare operations.

The aim of this systematic review was to comprehensively
evaluate the predictive accuracy, methodological robustness,
and managerial relevance of artificial intelligence—based
models used for operational performance and failure-
risk assessment in healthcare systems. Specifically,
the review sought to synthesize and critically appraise
existing evidence on the application of Al-based predictive
models to healthcare operational outcomes and to assess
their implications for healthcare management, quality
improvement, and policy decision-making, with particular
emphasis on standardized performance metrics and risk-
of-bias considerations.

METHODS

Review Design: This systematic review and meta-analysis
was conducted in accordance with the Preferred Reporting
Items for Systematic Reviews and Meta-Analyses
(PRISMA) 2020 guidelines. A predefined review protocol
was developed prior to study selection to minimize
selection bias and enhance methodological transparency.
The protocol specified the review objectives, eligibility
criteria, search strategy, data extraction framework, risk-of-
bias assessment, and statistical synthesis plan, in alignment
with best practices for prediction-model evidence synthesis
in healthcare management research.

Given the predictive and methodological nature of the
included studies, the review design was tailored to evaluate
not only outcome associations but also model performance,
validation rigor, and operational applicability. The
methodological approach was further informed by recent
guidance on the synthesis of artificial intelligence—based
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prediction models, emphasizing discrimination, calibration,
generalizability, and interpretability rather than causal
inference alone.

Eligibility Criteria (PECOS Framework): Eligibility
criteria were defined using the PECOS framework to ensure
consistency and relevance to healthcare operations and
health administration contexts.

*  Population: Studies were eligible if they examined
healthcare systems, organizations, departments,
services, or operational units, including hospitals,
clinics, diagnostic services, care pathways, or system-
level processes. Studies focusing exclusively on
individual clinical outcomes without an operational or
organizational dimension were excluded.

*  Exposure (Index Models): Eligible studies employed
artificial intelligence, machine learning, or deep
learning—based predictive models designed to estimate
operational performance, service longevity, or failure
risk. This included supervised, unsupervised, and
hybrid learning approaches applied to healthcare
operational data.

»  Comparator: When available, studies comparing Al-
based models with conventional statistical approaches
(e.g., regression models, rule-based systems, or
traditional performance indicators) were included.
However, the absence of a comparator did not
constitute an exclusion criterion, reflecting real-world
variability in predictive modeling research.

*  Outcomes: Primary outcomes included measures
of operational performance, service sustainability,
failure events, quality breakdowns, inefficiencies, or
premature service termination. Secondary outcomes
included predictive performance metrics such as
discrimination, classification accuracy, and error
measures.

*  Study Designs: Observational studies, retrospective
cohort analyses, secondary analyses of randomized
trials, and real-world healthcare datasets were included.
Case reports, purely conceptual papers, simulation-
only studies without healthcare data, and narrative
reviews were excluded.

Data Sources and Search Strategy

Search Protocol: The search strategy combined three
core concept blocks using the Boolean operator AND:
(healthcare systems/healthcare operations/service delivery/
clinical workflows/care pathways) AND (operational
performance/failure/efficiency/quality breakdowns/
service disruption/sustainability/longevity) AND (artificial
intelligence/machine learning/deep learning/neural
networks/random forest/gradient boosting/support vector
machines/predictive analytics). The search syntax was
adapted to the indexing requirements of each database,
including PubMed/MEDLINE, Embase, Scopus, Web
of Science Core Collection, Cochrane CENTRAL, and
IEEE Xplore, with no restrictions on geographic region,
healthcare setting, or level of care (Table 1).
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Search strings were adapted to the syntax of each database
to optimize sensitivity and specificity. No restrictions were
applied based on geographical region, healthcare setting, or
income level, to ensure global representativeness. Reference
lists of included studies were also screened to identify
additional eligible publications.

Study Selection and Data Extraction: Study selection
was conducted in two stages. First, titles and abstracts were
independently screened by two reviewers to exclude clearly
irrelevant records. Second, full-text articles were retrieved
and assessed against the eligibility criteria. Discrepancies at
any stage were resolved through discussion and consensus,
with arbitration by a third reviewer when necessary.

Data extraction was performed using a standardized, piloted
extraction form to ensure consistency. Extracted variables
included:

*  Study characteristics (year, country, healthcare setting)

*  Operational context and unit of analysis

* Al model type and algorithmic approach

e Predictor domains (clinical, administrative,
organizational, process-level)

e Validation strategy (internal, external, cross-validation)

*  Predictive performance metrics (e.g., AUC, accuracy,
precision, recall, F1-score)

*  Model interpretability and explainability methods

*  Reported implementation or managerial implications

Risk of Bias Assessment: Risk of bias and applicability
were assessed using the QUADAS-AI tool, adapted to
the context of healthcare operations and management
research, given its explicit focus on artificial intelligence—
based predictive modeling and dataset governance. The
assessment evaluated multiple domains, including the
representativeness of patient populations or healthcare
systems and operational units (patient or system selection),
transparency and rigor in model development, training,
and tuning (index model), clarity and consistency in
defining operational performance outcomes or failure
events (reference standard), alignment between predictor
data collection and outcome assessment periods (flow and
timing), and the quality, completeness, and external validity
of datasets (dataset governance and generalizability). Each
domain was rated as low risk, some concerns, or high risk
of bias, and overall risk-of-bias judgments were derived
from the collective assessment of these domains.

Statistical Analysis: Quantitative synthesis was conducted
using random-effects meta-analysis, reflecting anticipated
heterogeneity in healthcare settings, operational definitions,
datasets, and modeling approaches. Predictive performance
metrics reported by two or more independent datasets were
eligible for pooling.

Performance metrics bounded between 0 and 1 (e.g., AUC,
accuracy, precision, recall, F1-score) were logit-transformed
prior to pooling to stabilize variances and reduce skewness.
Pooled estimates were back-transformed for interpretability.
Between-study heterogeneity was assessed using:
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e I? statistics to quantify the proportion of variability = Where heterogeneity was substantial, results were

attributable to heterogeneity interpreted cautiously, emphasizing contextual performance

e T statistics to estimate between-study variance rather than universal benchmarks. Sensitivity analyses were
considered when sufficient data were available.

Table 1. Search strings utilised across the databases

Database Search string (database-adapted; no two identical)

PubMed / MEDLINE ((“Health Services”[MeSH] OR “Healthcare Systems”[MeSH] OR “Hospital Administration”
[MeSH] OR “Delivery of Health Care”[MeSH] OR hospital*[tiab] OR healthcare system*[tiab]
OR service delivery[tiab] OR clinical workflow*[tiab] OR care pathway* [tiab] OR
operational process*[tiab]) AND (fail*[tiab] OR performance[tiab] OR efficiency

[tiab] OR quality[tiab] OR breakdown*[tiab] OR disruption*[tiab] OR

sustainability[tiab] OR longevity[tiab] OR “adverse event*”[tiab] OR “service interruption
*”[tiab]) AND (“Artificial Intelligence”[MeSH] OR “Machine Learning”[MeSH] OR “Deep
Learning”[MeSH] OR “Neural Networks, Computer”’[MeSH] OR “predictive model*”

[tiab] OR “convolutional neural network™[tiab] OR CNNJtiab] OR “random

forest’[tiab] OR XGBoost[tiab] OR “gradient boosting”[tiab] OR “support vector machine”
[tiab] OR “risk prediction™[tiab]))

Embase (Emtree) (‘health care delivery’/exp OR ‘health care system’/exp OR ‘hospital management’/exp

OR “clinical workflow’/exp OR hospital*:ti,ab OR healthcare:ti,ab OR service delivery:ti,ab)
AND (‘treatment failure’/exp OR ‘health care quality’/exp OR ‘efficiency’/exp OR ‘risk
assessment’/exp OR fail*:ti,ab OR performance:ti,ab OR sustainability:ti,ab OR

disruption*:ti,ab) AND (‘artificial intelligence’/exp OR ‘machine learning’/exp OR

‘deep learning’/exp OR ‘neural network’/exp OR cnn:ti,ab OR

“random forest”:ti,ab OR “support vector machine”:ti,ab OR xgboost:ti,ab

OR catboost:ti,ab) AND [humans]/lim

Scopus TITLE-ABS-KEY((healthcare OR “health care system*” OR hospital* OR “service delivery”
OR “clinical workflow*” OR “care pathway*” OR “healthcare operation*”) AND (fail*

OR performance OR efficiency OR quality OR sustainability OR breakdown* OR disruption*
OR “adverse event®” OR “service failure*”’) AND (“artificial intelligence” OR

“machine learning” OR “deep learning” OR “neural network®*” OR CNN OR “random forest”
OR “gradient boost*”” OR XGBoost OR CatBoost OR “support vector” OR

“predictive analytics” OR “risk prediction”))

Web of Science TS=((healthcare NEAR/2 system*) OR (healthcare NEAR/2 operation*) OR

Core Collection (hospital NEAR/2 management) OR “service delivery” OR “care pathway*”) AND TS=
(fail* OR performance OR efficiency OR quality OR sustainability OR disruption* OR
breakdown*) AND TS=(“artificial intelligence” OR “machine learning” OR “deep learning”
OR “neural network*” OR “convolution* network*” OR CNN OR “random forest” OR
“gradient boosting” OR XGBoost OR “support vector machine” OR “predictive model*”)
Cochrane CENTRAL ((healthcare OR hospital OR “health care delivery” OR “clinical service*”” OR

“care pathway*”) AND (failure OR performance OR efficiency OR quality OR

sustainability OR disruption)) AND ((“machine learning” OR “deep learning” OR

“artificial intelligence” OR “neural network” OR CNN OR “random forest” OR

“support vector machine” OR XGBoost))

IEEE Xplore (“healthcare” OR “health care system” OR hospital OR “clinical workflow” OR “service
delivery””) AND (“failure” OR “performance” OR “efficiency” OR “quality” OR “risk
assessment” OR “service disruption”) AND (“machine learning” OR “deep learning”

OR “artificial intelligence” OR “neural network” OR “convolutional neural network”

OR CNN OR “random forest” OR “gradient boosting” OR “support vector machine”)

105 ARTIFICIAL INTELLIGENCE-BASED PREDICTIVE MODELS FOR SSN JOURNAL OF MANAGEMENT & TECHNOLOGY
OPERATIONAL PERFORMANCE ASSESSMENT IN HEALTHCARE RESEARCH COMMUNICATIONS



RESULTS

Study Selection: A total of 1,248 records were identified
through database searches. After removal of 248 duplicate
records, 1,000 records remained for title and abstract
screening (Figure 1). Following this stage, 820 reports were
deemed potentially relevant and were sought for full-text
retrieval. Of these, 74 reports could not be retrieved due to
paywall restrictions or unavailable full texts, leaving 746
full-text articles assessed for eligibility. Full-text exclusions
included case reports or case series (n = 220), literature
reviews or editorials (n = 180), and studies not aligned with
the PECOS framework (n = 338). This process resulted in
eight studies [16-23] being included in the final qualitative
synthesis and quantitative meta-analysis.

Figure 1: PRISMA Flow Diagram
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Figure 2: Bias levels assessed across the included studies

Author Year) | System Selection | Index Al Model | Reference Standard|  Flow & TiBétgset Goverance | Generd Overal Risk of Bizs
Thangetal, (2019) Low Low Low Low Low ow
Kimetal (2020) | Some concerns low Low low Some concerns | Some concens
Patel et al, (2020) Low Some cancerns Low low Some concerns | Some concems
Garciaetal, (2021) Low Low Low Low Low Low
Ahmed et al. (2021)| Some concems | Some concerns Low Low Some concems | Some concems

Lietal (2022) Low Low Low Some concems Low Low
Rossietal (2023) | - Some concens low Low Some concerms | Same cencems | Some concems
Singh et &l (2024) Low Low Low Low Low Low

Risk of Bias: Assessment using the QUADAS-AI
framework indicated that four studies demonstrated a
low overall risk of bias, while the remaining four studies
raised some concerns. The primary sources of bias were
related to dataset representativeness, inconsistencies in
outcome definitions, and the absence of external validation
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of predictive models. Overall, the risk-of-bias profile
highlighted variability in methodological rigor across
studies, underscoring the need for cautious interpretation
of pooled results.

A total of eight studies fulfilled the eligibility criteria and
were included in the final qualitative synthesis. These
studies were published between 2019 and 2024 and
encompassed a wide range of healthcare settings, including
acute care hospitals, outpatient services, diagnostic units,
and system-level operational workflows. The operational
outcomes examined varied across studies and included
service disruptions, workflow inefficiencies, capacity-
related failures, premature termination of care processes,
and indicators of service sustainability. Substantial
heterogeneity was observed with respect to study design,
dataset size, operational definitions, and healthcare contexts.
The artificial intelligence modelling approaches employed
across the included studies were diverse.

Figure 3: Forest Plot showing the AI Based Predictive
Models Healthcare Operational Performance

Forest Plot of Al-Based Predictive Models
Healthcare Operational Performance
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Commonly applied algorithms included random forest
models, gradient boosting techniques, support vector
machines, artificial neural networks, and deep-learning
architectures. Predictor variables were drawn from multiple
domains, including administrative and utilisation data,
staffing and workforce indicators, workflow and process
metrics, and organisational characteristics. Most studies
relied on retrospective datasets obtained from electronic
health records, administrative databases, or healthcare
operational information systems. Model validation was
predominantly internal, using split-sample approaches or
cross-validation techniques, while external validation across
independent healthcare systems was infrequently reported.
Regarding predictive performance, all eight studies reported
either discrimination or classification metrics. Reported area
under the receiver operating characteristic curve (AUC)
values generally indicated moderate discriminatory ability,
reflecting performance above random classification but
below levels typically considered highly discriminative.
Several studies also reported classification-based metrics,
including accuracy, precision, recall, and Fl-score. In
many instances, accuracy and Fl-score values exceeded
corresponding AUC estimates; however, these metrics
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demonstrated wide variability across studies and outcome
types, likely reflecting differences in class imbalance,
prevalence of operational failure events, and selected model
thresholds.

Evaluation of methodological quality and risk of bias
using the QUADAS-AI framework revealed mixed rigor
across the included studies. Four studies were assessed
as having a low overall risk of bias, while the remaining
four were judged to have some concerns, primarily related
to dataset representativeness, inconsistencies in outcome
definitions, and limited external validation. Reporting of
model calibration and interpretability was generally limited.
Overall, the qualitative synthesis highlights substantial
heterogeneity in methodological quality, operational focus,
and reported performance, emphasizing the need for greater
standardization in future research.

Meta-Analytic Findings: Meta-analysis of predictive
performance metrics demonstrated moderate overall
discriminatory capability of Al-based models for operational
performance and failure risk assessment in healthcare
systems. The pooled AUC was 0.646 (95% CI: 0.563—
0.721), with substantial between-study heterogeneity
(I = 86.8%). Classification-based performance metrics
yielded higher pooled estimates but exhibited pronounced
heterogeneity.

The pooled accuracy was 0.814 (95% CI: 0.534-0.943; 2=
99.3%), pooled precision was 0.799 (95% CI: 0.457-0.949;
12=99.4%), pooled recall was 0.690 (95% CI: 0.414—0.875;
I? = 93.6%), and pooled F1-score was 0.825 (95% CI:
0.493-0.958; 1> = 99.2%). Collectively, these findings
indicate considerable variability in predictive performance
across healthcare settings, operational contexts, and
modelling approaches.

DISCUSSION

This systematic review synthesised evidence from
eight studies examining artificial intelligence—based
predictive models for operational performance and
failure-risk assessment in healthcare systems [1-8].
Collectively, these studies evaluated a broad range of
operational outcomes, including service disruptions,
inefficiencies, workflow failures, and sustainability
indicators, using both discrimination- and classification-
based performance metrics. Across settings, Al-based
models demonstrated moderate predictive capability, with
substantial heterogeneity attributable to differences in
healthcare contexts, outcome definitions, and modelling
strategies.

Discriminatory performance, most commonly assessed
using the area under the receiver operating characteristic
curve (AUC), was moderate across the included studies.
Zhangetal. [1], Kim etal. [2], Ahmed et al. [5], and Rossi et
al. [7] reported AUC values in the lower-to-mid 0.60 range,
whereas Garcia et al. [4], Li et al. [6], and Singh et al. [8]
demonstrated slightly higher discriminatory performance.
These findings are consistent with prior research in

healthcare operations analytics, where predictive models for
patient flow, readmissions, and system congestion typically
achieve moderate discrimination rather than high accuracy.
Unlike narrowly defined clinical outcomes, operational
failures are shaped by interacting organisational, human,
and system-level factors, which inherently limit maximal
discriminatory performance even when advanced Al
techniques are applied.

Several studies emphasised classification-based metrics
such as accuracy and Fl-score, often reporting higher
numerical values than AUC. Patel et al. [3], Garcia et al.
[4], and Singh et al. [8] reported accuracy and F1-scores
exceeding 0.80, suggesting strong apparent performance
in identifying operational success or failure states.
However, this pattern mirrors earlier evidence indicating
that classification metrics may be inflated in operational
datasets characterised by class imbalance, such as rare
failure events or episodic service disruptions. Previous
studies in healthcare quality monitoring have cautioned that
high accuracy does not necessarily indicate robust failure
prediction when models predominantly learn non-failure
patterns.

Precision and recall metrics revealed important trade-
offs in operational prioritisation across studies. Kim et
al. [2] and Rossi et al. [7] emphasised higher precision,
thereby minimising false-positive alerts and supporting
targeted managerial interventions. In contrast, Li et al. [6]
and Ahmed et al. [5] reported higher recall, prioritising
sensitivity to potential failures at the cost of increased false
alarms. These contrasting strategies reflect differences in
operational objectives across healthcare systems and are
consistent with earlier research demonstrating that optimal
predictive thresholds depend on whether administrators
prioritise early warning, resource efficiency, or service
continuity.

Comparison with earlier Al-based healthcare operations
research reveals substantial methodological similarities.
As observed in prior studies of hospital capacity planning,
emergency department congestion, and workforce
optimization, most included studies relied on retrospective
datasets and internal validation approaches. External
validation across independent healthcare systems was
uncommon. Studies with clearer operational definitions and
stronger data governance, such as Garcia et al. [4] and Singh
et al. [8], tended to report more stable and interpretable
results, reinforcing longstanding recommendations for
standardized outcome definitions and transparent model
reporting.

From a healthcare management perspective, these findings
suggest that Al-based predictive models can enhance
situational awareness and proactive decision-making,
although their utility remains highly context-dependent.
None of the reviewed studies demonstrated uniformly high
performance across all metrics, underscoring that Al should
complement rather than replace managerial judgment.
This conclusion aligns with conceptual frameworks
positioning Al as a decision-support tool embedded within
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organizational workflows, governance structures, and
quality-improvement systems, rather than as a standalone
solution for operational inefficiency.

A key strength of this review lies in its systematic and
theory-informed synthesis of Al-based operational
prediction models across diverse healthcare contexts. By
integrating multiple performance metrics and evaluating
methodological quality using a structured risk-of-bias
framework, this review provides a balanced assessment of
the current evidence base. Inclusion of studies from multiple
countries and healthcare settings further enhances the global
relevance of the findings.

Nevertheless, several limitations should be acknowledged.
Substantial heterogeneity in outcome definitions and
performance reporting limited direct comparability across
studies and constrained quantitative synthesis. Most
studies relied on retrospective data and internal validation,
raising concerns regarding generalizability and real-world
implementation. Inconsistent reporting of calibration,
interpretability, and governance mechanisms further
limited assessment of managerial applicability. In addition,
publication bias toward positive performance reporting
cannot be excluded.

Overall, this systematic review indicates that Al-based
predictive models offer moderate, context-sensitive value
for operational performance and failure-risk assessment in
healthcare systems. Although these models consistently
outperform descriptive and retrospective approaches,
their effectiveness is constrained by data quality, outcome
specification, and validation rigor. Al-based tools should
therefore be integrated as supportive components within
broader operational governance and quality-improvement
frameworks rather than deployed as standalone solutions.
Future research should prioritize standardized operational
outcomes, external validation, and evaluation of real-
world impact to advance the sustainable adoption of Al in
healthcare operations management.

Comparison with earlier Al-based healthcare operations
studies reveals strong methodological parallels. Similar to
previous research in hospital capacity planning, emergency
department congestion, and workforce optimization, most
included studies relied on retrospective datasets and internal
validation strategies. External validation across independent
healthcare systems was uncommon, as observed in prior
reviews of predictive analytics in healthcare management.
Studies with clearer operational definitions and stronger
data governance, such as Garcia et al. (2021) and Singh et
al. (2024), tended to report more stable and interpretable
results, reinforcing longstanding recommendations for
standardized outcome definitions and transparent model
reporting.

From a healthcare management perspective, the findings
suggest that Al-based predictive models can meaningfully
enhance situational awareness and proactive decision-
making, but their utility remains context-dependent. None
of the reviewed studies demonstrated universally high
performance across all metrics, underscoring that Al should
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complement rather than replace managerial judgment. This
inference is consistent with earlier conceptual frameworks
positioning Al as a decision-support tool embedded within
organizational workflows, governance structures, and
quality-improvement systems, rather than as a standalone
solution to operational inefficiency.

A key strength of this review lies in its systematic and
theory-informed synthesis of Al-based operational
prediction models across diverse healthcare contexts. By
integrating multiple performance metrics and explicitly
evaluating methodological quality using a structured risk-
of-bias framework, this review provides a comprehensive
and balanced assessment of the current evidence base.
The inclusion of studies spanning multiple countries
and healthcare settings further enhances the relevance of
findings for global health systems.

However, several limitations warrant consideration. First,
substantial heterogeneity in outcome definitions and
performance reporting limited direct comparability across
studies and precluded deeper quantitative synthesis beyond
pooled summaries. Second, most included studies relied on
retrospective data and internal validation, raising concerns
regarding generalizability and real-world implementation.
Third, inconsistent reporting of calibration, interpretability,
and governance mechanisms constrained the assessment of
managerial applicability. Finally, publication bias toward
positive performance reporting cannot be excluded.

The central inference of this systematic review is that
Al-based predictive models offer moderate, context-
sensitive value for operational performance and failure
risk assessment in healthcare systems. While these models
consistently outperform descriptive and retrospective
approaches, their effectiveness is constrained by data
quality, outcome specification, and validation rigour. Al-
based tools should therefore be integrated as supportive
components within broader operational governance and
quality-improvement frameworks, rather than deployed
as standalone solutions. Future research should prioritise
standardised operational outcomes, external validation, and
evaluation of real-world impact to advance the translation
of Al into sustainable healthcare operations management.

CONCLUSION

This systematic review and meta-analysis demonstrates
that artificial intelligence—based predictive models offer
moderate, context-sensitive value in assessing operational
performance and failure risk within healthcare systems,
consistently outperforming descriptive and retrospective
approaches while falling short of universally high predictive
accuracy. The findings highlight that operational failures
remain a global health-systems challenge driven by
complex, nonlinear interactions among organisational,
workforce, and system-level factors, which inherently limit
predictive performance. Although Al models can enhance
situational awareness and support proactive managerial
decision-making, their effectiveness is constrained by data
quality, heterogeneous outcome definitions, and limited
external validation. Consequently, Al should be integrated
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as a decision-support component within broader governance
and quality-improvement frameworks, rather than deployed
as a standalone solution, with future research focusing
on standardised operational outcomes, robust external
validation, and real-world impact evaluation to enable
sustainable adoption in healthcare operations management.
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