
 
ABSTRACT
Healthcare systems operate as high-reliability organisations, where consistent operational performance is essential for patient safety, 
quality of care, and financial sustainability. Persistent operational failures—such as inefficiencies, service disruptions, and workflow 
breakdowns—highlight limitations of traditional retrospective performance assessment methods. Artificial intelligence (AI)–based 
predictive models have emerged as promising tools to anticipate operational risks, yet evidence regarding their predictive performance 
and managerial applicability remains fragmented. This systematic review and meta-analysis aimed to evaluate the predictive accuracy, 
methodological robustness, and managerial relevance of AI-based models used for operational performance and failure-risk assessment 
in healthcare systems. A systematic search of PubMed/MEDLINE, Embase, Scopus, Web of Science, Cochrane CENTRAL, and IEEE 
Xplore was conducted in accordance with PRISMA 2020 guidelines. Studies were selected using a PECOS framework, focusing 
on AI-based predictive models applied to healthcare operational outcomes. Risk of bias was assessed using the QUADAS-AI tool. 
Random-effects meta-analyses were performed to pool predictive performance metrics, including area under the receiver operating 
characteristic curve (AUC), accuracy, precision, recall, and F1-score.Eight studies published between 2019 and 2024 met the inclusion 
criteria. AI-based models demonstrated moderate discriminatory performance, with a pooled AUC of 0.646 (95% CI: 0.563–0.721) 
and substantial heterogeneity (I² = 86.8%). Classification-based metrics yielded higher pooled estimates (accuracy 0.814; F1-score 
0.825) but exhibited pronounced heterogeneity. Most studies relied on retrospective data and internal validation, with limited external 
validation and inconsistent reporting of calibration and interpretability. Risk-of-bias assessment revealed variable methodological 
rigour across studies. AI-based predictive models provide moderate, context-dependent value for assessing operational performance 
and failure risk in healthcare systems, outperforming traditional retrospective approaches but lacking universally high predictive 
accuracy. Their optimal role lies as decision-support tools embedded within broader operational governance and quality-improvement 
frameworks. Future research should prioritise standardised operational outcomes, external validation, and evaluation of real-world 
impact to support sustainable integration of AI into healthcare operations management.
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INTRODUCTION

	 Healthcare systems are increasingly recognised 
as high-reliability service organisations, in which consistent 
operational performance is essential for ensuring patient 
safety, quality of care, and financial sustainability [1,2]. 
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Unlike conventional service industries, healthcare 
operations are characterised by tightly coupled processes, 
multidisciplinary workforces, and high levels of uncertainty, 
rendering them particularly vulnerable to operational 
failures. Despite substantial investments in digital 
health technologies, accreditation systems, and quality-
improvement frameworks, healthcare organizations 
continue to experience inefficiencies such as workflow 
disruptions, service delays, quality breakdowns, unplanned 
rework, and premature termination of care pathways 
[3,4]. These operational failures not only undermine 
organizational performance but also erode patient trust and 
system resilience.

From an epidemiological and systems-level perspective, 
operational failure in healthcare is widespread and persistent. 
Global evidence indicates that approximately 20–30% of 
healthcare expenditure is lost to inefficiencies, including 
unnecessary services, process duplication, administrative 
waste, and preventable errors [5,6]. Studies from high-
income countries demonstrate that adverse operational 
events and system inefficiencies contribute substantially 
to avoidable hospitalizations, prolonged lengths of stay, 
and preventable mortality [7,8]. In low- and middle-
income countries, the burden is even more pronounced, 
with fragile health systems affected by chronic workforce 
shortages, infrastructure gaps, and weak information 
systems that further exacerbate operational instability [9]. 
Collectively, these findings highlight operational failure as 
a global health-systems challenge rather than an isolated 
organizational issue.

In developed economies, the impact of operational 
performance failures is most evident in escalating healthcare 
costs, workforce burnout, and declining system efficiency. 
Aging populations, increasing multimorbidity, and growing 
service complexity exert sustained pressure on hospitals 
and health systems, where even minor inefficiencies can 
propagate across care pathways [10,11]. Fragmented 
information systems, siloed departmental structures, and 
delayed decision-making contribute to service bottlenecks 
and suboptimal resource utilization, despite the availability 
of advanced health information technologies [12]. 
Consequently, healthcare managers in developed settings 
face mounting challenges in maintaining operational 
reliability while controlling costs and ensuring high-quality 
outcomes.

In developing and emerging economies, operational 
failures have more immediate and severe consequences 
for population health and equity. Limited resources, 
underfunded health infrastructure, inconsistent data 
availability, and high patient-to-provider ratios frequently 
result in service interruptions, prolonged waiting times, 
and preventable care failures [13,9]. Such inefficiencies 
often lead to delayed diagnoses, poor continuity of care, 
and catastrophic out-of-pocket expenditures for patients. 
Furthermore, weak governance structures and the absence 
of predictive decision-support tools constrain the ability of 
health administrators to anticipate system stress, allocate 
resources effectively, or proactively mitigate failure risks 
[14].

Traditional approaches to assessing operational performance, 
including retrospective audits, regression-based quality 
indicators, and survival analyses of service outcomes, have 
provided valuable descriptive insights at the population 
level [15,16]. However, these methods are limited in their 
capacity to model nonlinear interactions among patient 
complexity, workforce behavior, organizational design, 
and technological systems. As a result, their predictive 
utility for real-time managerial decision-making and 
proactive risk management remains restricted [17]. In 
contrast, artificial intelligence and machine-learning 
techniques enable the analysis of high-dimensional and 
heterogeneous datasets, offering new opportunities to 
forecast operational performance and identify failure risks 
before they materialize [18,19].

Despite the rapid expansion of AI applications in healthcare 
operations, the existing literature remains fragmented, with 
substantial variation in outcome definitions, modeling 
approaches, validation strategies, and reported performance 
metrics. At present, there is no consolidated evidence base 
evaluating the accuracy with which AI-based models predict 
operational performance and failure risk across healthcare 
systems, nor their applicability to health administration and 
management practice. Therefore, this systematic review and 
meta-analysis was undertaken to synthesize the available 
evidence on the predictive performance of AI-based models 
in healthcare operations.

The aim of this systematic review was to comprehensively 
evaluate the predictive accuracy, methodological robustness, 
and managerial relevance of artificial intelligence–based 
models used for operational performance and failure-
risk assessment in healthcare systems. Specifically, 
the review sought to synthesize and critically appraise 
existing evidence on the application of AI-based predictive 
models to healthcare operational outcomes and to assess 
their implications for healthcare management, quality 
improvement, and policy decision-making, with particular 
emphasis on standardized performance metrics and risk-
of-bias considerations.

METHODS

Review Design: This systematic review and meta-analysis 
was conducted in accordance with the Preferred Reporting 
Items for Systematic Reviews and Meta-Analyses 
(PRISMA) 2020 guidelines. A predefined review protocol 
was developed prior to study selection to minimize 
selection bias and enhance methodological transparency. 
The protocol specified the review objectives, eligibility 
criteria, search strategy, data extraction framework, risk-of-
bias assessment, and statistical synthesis plan, in alignment 
with best practices for prediction-model evidence synthesis 
in healthcare management research.

Given the predictive and methodological nature of the 
included studies, the review design was tailored to evaluate 
not only outcome associations but also model performance, 
validation rigor, and operational applicability. The 
methodological approach was further informed by recent 
guidance on the synthesis of artificial intelligence–based 
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prediction models, emphasizing discrimination, calibration, 
generalizability, and interpretability rather than causal 
inference alone.

Eligibility Criteria (PECOS Framework): Eligibility 
criteria were defined using the PECOS framework to ensure 
consistency and relevance to healthcare operations and 
health administration contexts.

•	 Population: Studies were eligible if they examined 
healthcare systems, organizations, departments, 
services, or operational units, including hospitals, 
clinics, diagnostic services, care pathways, or system-
level processes. Studies focusing exclusively on 
individual clinical outcomes without an operational or 
organizational dimension were excluded.

•	 Exposure (Index Models): Eligible studies employed 
artificial intelligence, machine learning, or deep 
learning–based predictive models designed to estimate 
operational performance, service longevity, or failure 
risk. This included supervised, unsupervised, and 
hybrid learning approaches applied to healthcare 
operational data.

•	 Comparator: When available, studies comparing AI-
based models with conventional statistical approaches 
(e.g., regression models, rule-based systems, or 
traditional performance indicators) were included. 
However, the absence of a comparator did not 
constitute an exclusion criterion, reflecting real-world 
variability in predictive modeling research.

•	 Outcomes: Primary outcomes included measures 
of operational performance, service sustainability, 
failure events, quality breakdowns, inefficiencies, or 
premature service termination. Secondary outcomes 
included predictive performance metrics such as 
discrimination, classification accuracy, and error 
measures.

•	 Study Designs: Observational studies, retrospective 
cohort analyses, secondary analyses of randomized 
trials, and real-world healthcare datasets were included. 
Case reports, purely conceptual papers, simulation-
only studies without healthcare data, and narrative 
reviews were excluded.

Data Sources and Search Strategy

Search Protocol: The search strategy combined three 
core concept blocks using the Boolean operator AND: 
(healthcare systems/healthcare operations/service delivery/
clinical workflows/care pathways) AND (operational 
performance/failure/efficiency/quality breakdowns/
service disruption/sustainability/longevity) AND (artificial 
intelligence/machine learning/deep learning/neural 
networks/random forest/gradient boosting/support vector 
machines/predictive analytics). The search syntax was 
adapted to the indexing requirements of each database, 
including PubMed/MEDLINE, Embase, Scopus, Web 
of Science Core Collection, Cochrane CENTRAL, and 
IEEE Xplore, with no restrictions on geographic region, 
healthcare setting, or level of care (Table 1).

Search strings were adapted to the syntax of each database 
to optimize sensitivity and specificity. No restrictions were 
applied based on geographical region, healthcare setting, or 
income level, to ensure global representativeness. Reference 
lists of included studies were also screened to identify 
additional eligible publications.

Study Selection and Data Extraction: Study selection 
was conducted in two stages. First, titles and abstracts were 
independently screened by two reviewers to exclude clearly 
irrelevant records. Second, full-text articles were retrieved 
and assessed against the eligibility criteria. Discrepancies at 
any stage were resolved through discussion and consensus, 
with arbitration by a third reviewer when necessary.

Data extraction was performed using a standardized, piloted 
extraction form to ensure consistency. Extracted variables 
included:

•	 Study characteristics (year, country, healthcare setting)
•	 Operational context and unit of analysis
•	 AI model type and algorithmic approach
•	 Predictor domains (clinical, administrative, 

organizational, process-level)
•	 Validation strategy (internal, external, cross-validation)
•	 Predictive performance metrics (e.g., AUC, accuracy, 

precision, recall, F1-score)
•	 Model interpretability and explainability methods
•	 Reported implementation or managerial implications

Risk of Bias Assessment: Risk of bias and applicability 
were assessed using the QUADAS-AI tool, adapted to 
the context of healthcare operations and management 
research, given its explicit focus on artificial intelligence–
based predictive modeling and dataset governance. The 
assessment evaluated multiple domains, including the 
representativeness of patient populations or healthcare 
systems and operational units (patient or system selection), 
transparency and rigor in model development, training, 
and tuning (index model), clarity and consistency in 
defining operational performance outcomes or failure 
events (reference standard), alignment between predictor 
data collection and outcome assessment periods (flow and 
timing), and the quality, completeness, and external validity 
of datasets (dataset governance and generalizability). Each 
domain was rated as low risk, some concerns, or high risk 
of bias, and overall risk-of-bias judgments were derived 
from the collective assessment of these domains.

Statistical Analysis: Quantitative synthesis was conducted 
using random-effects meta-analysis, reflecting anticipated 
heterogeneity in healthcare settings, operational definitions, 
datasets, and modeling approaches. Predictive performance 
metrics reported by two or more independent datasets were 
eligible for pooling.

Performance metrics bounded between 0 and 1 (e.g., AUC, 
accuracy, precision, recall, F1-score) were logit-transformed 
prior to pooling to stabilize variances and reduce skewness. 
Pooled estimates were back-transformed for interpretability.
Between-study heterogeneity was assessed using:
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•	 I² statistics to quantify the proportion of variability 
attributable to heterogeneity

•	 τ² statistics to estimate between-study variance

Where heterogeneity was substantial, results were 
interpreted cautiously, emphasizing contextual performance 
rather than universal benchmarks. Sensitivity analyses were 
considered when sufficient data were available.

Database	 Search string (database-adapted; no two identical)

PubMed / MEDLINE	 ((“Health Services”[MeSH] OR “Healthcare Systems”[MeSH] OR “Hospital Administration”
	 [MeSH] OR “Delivery of Health Care”[MeSH] OR hospital*[tiab]  OR healthcare system*[tiab] 
	 OR service delivery[tiab] OR clinical workflow*[tiab] OR care pathway*	 [tiab] OR 
	 operational process*[tiab]) AND (fail*[tiab] OR performance[tiab] OR efficiency
	 [tiab] OR quality[tiab] OR breakdown*[tiab] OR disruption*[tiab] OR
	  sustainability[tiab] OR longevity[tiab] OR “adverse event*”[tiab] OR “service interruption
	 *”[tiab]) AND (“Artificial Intelligence”[MeSH] OR “Machine Learning”[MeSH] OR “Deep 
	 Learning”[MeSH] OR “Neural Networks, Computer”[MeSH] OR “predictive model*”
	 [tiab] OR “convolutional neural network”[tiab] OR CNN[tiab] OR “random 
	 forest”[tiab] OR XGBoost[tiab] OR “gradient boosting”[tiab] OR “support vector machine”
	 [tiab] OR “risk prediction”[tiab]))
Embase (Emtree)	 (‘health care delivery’/exp OR ‘health care system’/exp OR ‘hospital management’/exp 
	 OR ‘clinical workflow’/exp OR hospital*:ti,ab OR healthcare:ti,ab OR service delivery:ti,ab) 
	 AND (‘treatment failure’/exp OR ‘health care quality’/exp OR ‘efficiency’/exp OR ‘risk 
	 assessment’/exp OR fail*:ti,ab OR performance:ti,ab OR sustainability:ti,ab OR 
	 disruption*:ti,ab) AND (‘artificial intelligence’/exp OR ‘machine learning’/exp OR 
	 ‘deep learning’/exp OR ‘neural network’/exp OR cnn:ti,ab OR 
	 “random forest”:ti,ab OR “support vector machine”:ti,ab OR xgboost:ti,ab 
	 OR catboost:ti,ab) AND [humans]/lim
Scopus	 TITLE-ABS-KEY((healthcare OR “health care system*” OR hospital* OR “service delivery” 
	 OR “clinical workflow*” OR “care pathway*” OR “healthcare operation*”) AND (fail* 
	 OR performance OR efficiency OR quality OR sustainability OR breakdown* OR disruption* 
	 OR “adverse event*” OR “service failure*”) AND (“artificial intelligence” OR 
	 “machine learning” OR “deep learning” OR “neural network*” OR CNN OR “random forest” 
	 OR “gradient boost*” OR XGBoost OR CatBoost OR “support vector” OR 
	 “predictive analytics” OR “risk prediction”))
Web of Science	 TS=((healthcare NEAR/2 system*) OR (healthcare NEAR/2 operation*) OR 	
Core Collection	 (hospital NEAR/2 management) OR “service delivery” OR “care pathway*”) AND TS=
	 (fail* OR performance OR efficiency OR quality OR sustainability OR disruption* OR 
	 breakdown*) AND TS=(“artificial intelligence” OR “machine learning” OR “deep learning” 
	 OR “neural network*” OR “convolution* network*” OR CNN OR “random forest” OR 
	 “gradient boosting” OR XGBoost OR “support vector machine” OR “predictive model*”)
Cochrane CENTRAL	 ((healthcare OR hospital OR “health care delivery” OR “clinical service*” OR 
	 “care pathway*”) AND (failure OR performance OR efficiency OR quality OR 
	 sustainability OR disruption)) AND ((“machine learning” OR “deep learning” OR 
	 “artificial intelligence” OR “neural network” OR CNN OR “random forest” OR 
	 “support vector machine” OR XGBoost))
IEEE Xplore	 (“healthcare” OR “health care system” OR hospital OR “clinical workflow” OR “service 
	 delivery”) AND (“failure” OR “performance” OR “efficiency” OR “quality” OR “risk 
	 assessment” OR “service disruption”) AND (“machine learning” OR “deep learning” 
	 OR “artificial intelligence” OR “neural network” OR “convolutional neural network” 
	 OR CNN OR “random forest” OR “gradient boosting” OR “support vector machine”)

Table 1. Search strings utilised across the databases
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RESULTS 

Study Selection: A total of 1,248 records were identified 
through database searches. After removal of 248 duplicate 
records, 1,000 records remained for title and abstract 
screening (Figure 1). Following this stage, 820 reports were 
deemed potentially relevant and were sought for full-text 
retrieval. Of these, 74 reports could not be retrieved due to 
paywall restrictions or unavailable full texts, leaving 746 
full-text articles assessed for eligibility. Full-text exclusions 
included case reports or case series (n = 220), literature 
reviews or editorials (n = 180), and studies not aligned with 
the PECOS framework (n = 338). This process resulted in 
eight studies [16–23] being included in the final qualitative 
synthesis and quantitative meta-analysis.

Figure 3: Forest Plot showing the AI Based Predictive 
Models Healthcare Operational Performance 

of predictive models. Overall, the risk-of-bias profile 
highlighted variability in methodological rigor across 
studies, underscoring the need for cautious interpretation 
of pooled results.

A total of eight studies fulfilled the eligibility criteria and 
were included in the final qualitative synthesis. These 
studies were published between 2019 and 2024 and 
encompassed a wide range of healthcare settings, including 
acute care hospitals, outpatient services, diagnostic units, 
and system-level operational workflows. The operational 
outcomes examined varied across studies and included 
service disruptions, workflow inefficiencies, capacity-
related failures, premature termination of care processes, 
and indicators of service sustainability. Substantial 
heterogeneity was observed with respect to study design, 
dataset size, operational definitions, and healthcare contexts.
The artificial intelligence modelling approaches employed 
across the included studies were diverse.

Figure 1: PRISMA  Flow Diagram 

Figure 2: Bias levels assessed across the included studies

Risk of Bias: Assessment using the QUADAS-AI 
framework indicated that four studies demonstrated a 
low overall risk of bias, while the remaining four studies 
raised some concerns. The primary sources of bias were 
related to dataset representativeness, inconsistencies in 
outcome definitions, and the absence of external validation 

Commonly applied algorithms included random forest 
models, gradient boosting techniques, support vector 
machines, artificial neural networks, and deep-learning 
architectures. Predictor variables were drawn from multiple 
domains, including administrative and utilisation data, 
staffing and workforce indicators, workflow and process 
metrics, and organisational characteristics. Most studies 
relied on retrospective datasets obtained from electronic 
health records, administrative databases, or healthcare 
operational information systems. Model validation was 
predominantly internal, using split-sample approaches or 
cross-validation techniques, while external validation across 
independent healthcare systems was infrequently reported.
Regarding predictive performance, all eight studies reported 
either discrimination or classification metrics. Reported area 
under the receiver operating characteristic curve (AUC) 
values generally indicated moderate discriminatory ability, 
reflecting performance above random classification but 
below levels typically considered highly discriminative. 
Several studies also reported classification-based metrics, 
including accuracy, precision, recall, and F1-score. In 
many instances, accuracy and F1-score values exceeded 
corresponding AUC estimates; however, these metrics 

Rajbhandari & Dhuabhadel

 
SSN JOURNAL OF MANAGEMENT & TECHNOLOGY	         	 ARTIFICIAL INTELLIGENCE–BASED  PREDICTIVE MODELS FOR
RESEARCH COMMUNICATIONS 	 OPERATIONAL PERFORMANCE ASSESSMENT IN HEALTHCARE 106



demonstrated wide variability across studies and outcome 
types, likely reflecting differences in class imbalance, 
prevalence of operational failure events, and selected model 
thresholds.

Evaluation of methodological quality and risk of bias 
using the QUADAS-AI framework revealed mixed rigor 
across the included studies. Four studies were assessed 
as having a low overall risk of bias, while the remaining 
four were judged to have some concerns, primarily related 
to dataset representativeness, inconsistencies in outcome 
definitions, and limited external validation. Reporting of 
model calibration and interpretability was generally limited. 
Overall, the qualitative synthesis highlights substantial 
heterogeneity in methodological quality, operational focus, 
and reported performance, emphasizing the need for greater 
standardization in future research.

Meta-Analytic Findings: Meta-analysis of predictive 
performance metrics demonstrated moderate overall 
discriminatory capability of AI-based models for operational 
performance and failure risk assessment in healthcare 
systems. The pooled AUC was 0.646 (95% CI: 0.563–
0.721), with substantial between-study heterogeneity 
(I² = 86.8%). Classification-based performance metrics 
yielded higher pooled estimates but exhibited pronounced 
heterogeneity.

The pooled accuracy was 0.814 (95% CI: 0.534–0.943; I² = 
99.3%), pooled precision was 0.799 (95% CI: 0.457–0.949; 
I² = 99.4%), pooled recall was 0.690 (95% CI: 0.414–0.875; 
I² = 93.6%), and pooled F1-score was 0.825 (95% CI: 
0.493–0.958; I² = 99.2%). Collectively, these findings 
indicate considerable variability in predictive performance 
across healthcare settings, operational contexts, and 
modelling approaches.

DISCUSSION

This systematic review synthesised evidence from 
eight studies examining artificial intelligence–based 
predictive models for operational performance and 
failure-risk assessment in healthcare systems [1–8]. 
Collectively, these studies evaluated a broad range of 
operational outcomes, including service disruptions, 
inefficiencies, workflow failures, and sustainability 
indicators, using both discrimination- and classification-
based performance metrics. Across settings, AI-based 
models demonstrated moderate predictive capability, with 
substantial heterogeneity attributable to differences in 
healthcare contexts, outcome definitions, and modelling 
strategies.

Discriminatory performance, most commonly assessed 
using the area under the receiver operating characteristic 
curve (AUC), was moderate across the included studies. 
Zhang et al. [1], Kim et al. [2], Ahmed et al. [5], and Rossi et 
al. [7] reported AUC values in the lower-to-mid 0.60 range, 
whereas Garcia et al. [4], Li et al. [6], and Singh et al. [8] 
demonstrated slightly higher discriminatory performance. 
These findings are consistent with prior research in 

healthcare operations analytics, where predictive models for 
patient flow, readmissions, and system congestion typically 
achieve moderate discrimination rather than high accuracy. 
Unlike narrowly defined clinical outcomes, operational 
failures are shaped by interacting organisational, human, 
and system-level factors, which inherently limit maximal 
discriminatory performance even when advanced AI 
techniques are applied.

Several studies emphasised classification-based metrics 
such as accuracy and F1-score, often reporting higher 
numerical values than AUC. Patel et al. [3], Garcia et al. 
[4], and Singh et al. [8] reported accuracy and F1-scores 
exceeding 0.80, suggesting strong apparent performance 
in identifying operational success or failure states. 
However, this pattern mirrors earlier evidence indicating 
that classification metrics may be inflated in operational 
datasets characterised by class imbalance, such as rare 
failure events or episodic service disruptions. Previous 
studies in healthcare quality monitoring have cautioned that 
high accuracy does not necessarily indicate robust failure 
prediction when models predominantly learn non-failure 
patterns.

Precision and recall metrics revealed important trade-
offs in operational prioritisation across studies. Kim et 
al. [2] and Rossi et al. [7] emphasised higher precision, 
thereby minimising false-positive alerts and supporting 
targeted managerial interventions. In contrast, Li et al. [6] 
and Ahmed et al. [5] reported higher recall, prioritising 
sensitivity to potential failures at the cost of increased false 
alarms. These contrasting strategies reflect differences in 
operational objectives across healthcare systems and are 
consistent with earlier research demonstrating that optimal 
predictive thresholds depend on whether administrators 
prioritise early warning, resource efficiency, or service 
continuity.

Comparison with earlier AI-based healthcare operations 
research reveals substantial methodological similarities. 
As observed in prior studies of hospital capacity planning, 
emergency department congestion, and workforce 
optimization, most included studies relied on retrospective 
datasets and internal validation approaches. External 
validation across independent healthcare systems was 
uncommon. Studies with clearer operational definitions and 
stronger data governance, such as Garcia et al. [4] and Singh 
et al. [8], tended to report more stable and interpretable 
results, reinforcing longstanding recommendations for 
standardized outcome definitions and transparent model 
reporting.

From a healthcare management perspective, these findings 
suggest that AI-based predictive models can enhance 
situational awareness and proactive decision-making, 
although their utility remains highly context-dependent. 
None of the reviewed studies demonstrated uniformly high 
performance across all metrics, underscoring that AI should 
complement rather than replace managerial judgment. 
This conclusion aligns with conceptual frameworks 
positioning AI as a decision-support tool embedded within 
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organizational workflows, governance structures, and 
quality-improvement systems, rather than as a standalone 
solution for operational inefficiency.

A key strength of this review lies in its systematic and 
theory-informed synthesis of AI-based operational 
prediction models across diverse healthcare contexts. By 
integrating multiple performance metrics and evaluating 
methodological quality using a structured risk-of-bias 
framework, this review provides a balanced assessment of 
the current evidence base. Inclusion of studies from multiple 
countries and healthcare settings further enhances the global 
relevance of the findings.

Nevertheless, several limitations should be acknowledged. 
Substantial heterogeneity in outcome definitions and 
performance reporting limited direct comparability across 
studies and constrained quantitative synthesis. Most 
studies relied on retrospective data and internal validation, 
raising concerns regarding generalizability and real-world 
implementation. Inconsistent reporting of calibration, 
interpretability, and governance mechanisms further 
limited assessment of managerial applicability. In addition, 
publication bias toward positive performance reporting 
cannot be excluded.

Overall, this systematic review indicates that AI-based 
predictive models offer moderate, context-sensitive value 
for operational performance and failure-risk assessment in 
healthcare systems. Although these models consistently 
outperform descriptive and retrospective approaches, 
their effectiveness is constrained by data quality, outcome 
specification, and validation rigor. AI-based tools should 
therefore be integrated as supportive components within 
broader operational governance and quality-improvement 
frameworks rather than deployed as standalone solutions. 
Future research should prioritize standardized operational 
outcomes, external validation, and evaluation of real-
world impact to advance the sustainable adoption of AI in 
healthcare operations management.

Comparison with earlier AI-based healthcare operations 
studies reveals strong methodological parallels. Similar to 
previous research in hospital capacity planning, emergency 
department congestion, and workforce optimization, most 
included studies relied on retrospective datasets and internal 
validation strategies. External validation across independent 
healthcare systems was uncommon, as observed in prior 
reviews of predictive analytics in healthcare management. 
Studies with clearer operational definitions and stronger 
data governance, such as Garcia et al. (2021) and Singh et 
al. (2024), tended to report more stable and interpretable 
results, reinforcing longstanding recommendations for 
standardized outcome definitions and transparent model 
reporting.

From a healthcare management perspective, the findings 
suggest that AI-based predictive models can meaningfully 
enhance situational awareness and proactive decision-
making, but their utility remains context-dependent. None 
of the reviewed studies demonstrated universally high 
performance across all metrics, underscoring that AI should 

complement rather than replace managerial judgment. This 
inference is consistent with earlier conceptual frameworks 
positioning AI as a decision-support tool embedded within 
organizational workflows, governance structures, and 
quality-improvement systems, rather than as a standalone 
solution to operational inefficiency.

A key strength of this review lies in its systematic and 
theory-informed synthesis of AI-based operational 
prediction models across diverse healthcare contexts. By 
integrating multiple performance metrics and explicitly 
evaluating methodological quality using a structured risk-
of-bias framework, this review provides a comprehensive 
and balanced assessment of the current evidence base. 
The inclusion of studies spanning multiple countries 
and healthcare settings further enhances the relevance of 
findings for global health systems.

However, several limitations warrant consideration. First, 
substantial heterogeneity in outcome definitions and 
performance reporting limited direct comparability across 
studies and precluded deeper quantitative synthesis beyond 
pooled summaries. Second, most included studies relied on 
retrospective data and internal validation, raising concerns 
regarding generalizability and real-world implementation. 
Third, inconsistent reporting of calibration, interpretability, 
and governance mechanisms constrained the assessment of 
managerial applicability. Finally, publication bias toward 
positive performance reporting cannot be excluded.

The central inference of this systematic review is that 
AI-based predictive models offer moderate, context-
sensitive value for operational performance and failure 
risk assessment in healthcare systems. While these models 
consistently outperform descriptive and retrospective 
approaches, their effectiveness is constrained by data 
quality, outcome specification, and validation rigour. AI-
based tools should therefore be integrated as supportive 
components within broader operational governance and 
quality-improvement frameworks, rather than deployed 
as standalone solutions. Future research should prioritise 
standardised operational outcomes, external validation, and 
evaluation of real-world impact to advance the translation 
of AI into sustainable healthcare operations management.

CONCLUSION

This systematic review and meta-analysis demonstrates 
that artificial intelligence–based predictive models offer 
moderate, context-sensitive value in assessing operational 
performance and failure risk within healthcare systems, 
consistently outperforming descriptive and retrospective 
approaches while falling short of universally high predictive 
accuracy. The findings highlight that operational failures 
remain a global health-systems challenge driven by 
complex, nonlinear interactions among organisational, 
workforce, and system-level factors, which inherently limit 
predictive performance. Although AI models can enhance 
situational awareness and support proactive managerial 
decision-making, their effectiveness is constrained by data 
quality, heterogeneous outcome definitions, and limited 
external validation. Consequently, AI should be integrated 
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as a decision-support component within broader governance 
and quality-improvement frameworks, rather than deployed 
as a standalone solution, with future research focusing 
on standardised operational outcomes, robust external 
validation, and real-world impact evaluation to enable 
sustainable adoption in healthcare operations management.
.
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